Semiclassical measures and the Schrödinger flow on Riemannian manifolds
نویسنده
چکیده
In this article we study limits of Wigner distributions (the so-called semiclassical measures) corresponding to sequences of solutions to the free Schrödinger equation on a Riemannian manifold (or equivalently, to sequences of solutions to the semiclassical Schrödinger equation at times of the order of 1/h, the inverse of the semiclassical parameter h). Some general results are presented, among which a weak version of Egorov’s theorem that holds in this setting. A complete characterization is given for the Euclidean space and Zoll manifolds (that is, manifolds with periodic geodesic flow) via averaging formulae relating the semiclassical measures corresponding to the evolution to those of the initial states. The case of the flat torus is also addressed; it is shown that non-classical behavior may occur when energy concentrates on resonant frequencies. Moreover, we present an example showing that the semiclassical measures associated to a sequence of states no loger determines those of their evolutions. Finally, some results concerning the equation with a potential are presented. Mathematics Subject Classification: Primary 81Q20; Secondary 37J35, 37N20, 58J47.
منابع مشابه
Semiclassical measures and the Schrödinger flow on compact manifolds
In this article we study limits of Wigner distributions corresponding to sequences of solutions to the Schrödinger equation on a compact Riemannian manifold. After presenting some general results describing their structure, we give an explicit characterization of the set of such limits under an additional geometrical assumption on the manifold; namely, that its geodesic flow is periodic. Finall...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملSpectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates
This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008